DNSSEC

From a protocol bug to a security advantage

Lutz Donnerhacke

db089309: 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb

1

A protocol from better times

- An ancient protocol
 - People were friendly and trustworthy
 - Internet was a warm and fuzzy place
- DNS is a protocol from admins for admins
 - Main assumption: Computers do not lie
 - Idea: A hierarchical distributed database
- Store locally, read globally

Playground to extend

- DNS works, so use is as a container
 - http://tools.ietf.org/wg/dnsext/
- DNS scales, so push a lot of data in
 - in-addr.arpa
- DNS can be misused as a catchword repository: www.catchword.com
- DNS may have multiple roots, so introduce private name spaces

Playground to manipulate

- Push all initial requests to a payment site
- Prevent requests to bad sites
- Offer own search engine for NXDOMAIN
- Geolocation for efficient content delivery
- Geolocation for lawful content selection
- Provide different software updates
- Prevent worm updates

trustroute +trace

- Modelling real world data as DNS records
- Transferring data into DNS primary server
- Transferring data into DNS secondaries
- Updating meta data in parent zone
- Delivering data to recursive servers
- Processing by resolver code
- Providing structures to applications
- Interpreting data by users

K۷

Securing the data flow

- Two possible design goals:
 - Detect manipulation
 - Prevent wire-tapping
- Facing typical problems
 - The compatibility hydra
 - Partial roll-out
 - Satellite networks
- Still designed by admins: NSEC(3)

DNS SECurity

- Trust the primary name server data
 - Signed by the zone-c
- A framework to verify integrity
 - Signature chains up to a trust anchor
- In band key management
 - DS records in parent zone (but glue!)
- Supports caching as well as offloading
- Provides peer authentication

Trust anchor management

- The root is signed
- In band key roll-overs: RFC 5011
- Fill the gaps (parent zone not signed)
 - Manual trust anchors: Edit files on disk
 - Trust Anchor Repositories: Look aside zones
 DS do.main => DLV do.main.dlv.pro.vi.der
 - Question: Precedence of sources?

The last mile

- In an ideal world, apps use a new API
 - Error messages might become helpful
 - Validation errors are SERVFAIL
- Resolver offloading
 - Provide validated data with AD
 - Allow validator chaining with CD
 - Question: Provide bogus data at all?
- Attacks on the last mile even for LEAs

Finally gain benefits

- DNSSEC adds trust to DNS
- Use DNS as a hierarchical distributed DB
 - Manage your SSHFPs centrally
 - Manage your CERTs distributed
 - Manage your OpenPGP keys distributed
- Do not deliver poisoned data to clients
 - Validate late, validate centrally

Further Consequences

- Current practice for Intranets
 - Build a separate network using site specific names and numbers
 - Provide application layer gateways, NAT, Split-DNS, and VPN for non-local access
 - Hide internal structure
 - Statically map necessary services (Firewall)
 - Provide local "root" services (Active Directory)

Current Intranets

The IPv6 impact

- IPv6 provides public, globally routable IPs
 - Clients do IPv6 automatically (even tunnel)
- IPv6 provides end-to-end communication
- IPv6 is not designed to be translated
- Future protocols rely on direct channels
 - Web 2.0: Numerous bits from different servers
 - Client to client communication
 - Shortest routing for "quality enhancements"

The DNSSEC impact

- Validation chain from a well-known key
 - Clients may have the key hardcoded
- Only one root possible
 - No local names
- Prevents rdata and NXDOMAIN rewriting
 - Consistent external and internal view
- Enterprise DNS rely on DNSSEC from everywhere (DirectAccess, SSH, _tcp ...)

The horrible mobile client

- Public mobile networks are everywhere
- Mobile clients
 - Important status symbols
 - Roam in and out quickly
 - Always on: Cloud services
 - Can't be configured
- IPv6
 - Exposes internal DNS servers
 - Create mobile peer-to-peer networks

Future (Intra)Nets

Modern intranets

- Accept consistency requirement
 - Local WLAN and mobile networks
 - REST web applications instead of VPN
- Secure the services, not the networks
- Secure the data, not the servers (cloud)
- Authenticate the user, not the computer
- Use DNS as trustworthy resource
- Always use direct communication

K٢

17

Conclusion

- IPv6 and DNSSEC dramatically change the design of modern networks
 - Information hiding policies do not work
 - Centralized policy enforcement unusable
- Concentrate on benefits
 - Build stable, globally routable networks
 - Enforce data security at the data level
 - Trust the people, not the devices

Did you sign your zones?

Why not?

